© 1978 by Springer-Verlag

Alternating Copolymerizations of Dioxaphospholanes with Acrylic Acid Derivatives and with α -Keto Acids. New Synthesis of Polyphosphonates

Takeo Saegusa*, Tsunenori Yokoyama and Shiro Kobayashi

Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University, Kyoto, 606, Japan

Introduction

This paper reports new copolymerizations of 2phenoxy-1,3,2-dioxaphospholane (1) with acrylic acid (2) and of 2-phenyl-1,3,2-dioxaphospholane (4) with ∞ -keto acid (5) to give polyphosphonates (3) and (6), respectively.

We have developed a series of new copolymerizations which occur without added catalyst and proceed through zwitterion intermediates (SAEGUSA et al, 1975a, b; 1976a; 1977a). In these copolymerization, a monomer of nucleophilic reactivity (M_N) reacts with another monomer having electrophilic reactivity (M_E) to generate a key intermediate of zwitterion ${}^+M_N{}^-M_E$. On the basis of this concept we found new polymer synthesis reactions to form polyphosphinate 7 from 4 and 2a (SAEGUSA et al, 1976b) and polyphosphate 8 from 1 and 5 (SAEGUSA et al, 1977b). In both cases, 1 and 4 acted as nucleophilic monomer (M_N) and 2 and 5

$$\begin{array}{c} \leftarrow \operatorname{ch}_{2}\operatorname{ch}_{2}\operatorname{ch}_{2}\operatorname{ch}_{2}\operatorname{co}_{2} \xrightarrow{}_{n} \\ \stackrel{Ph}{}_{7} \end{array} \begin{array}{c} \leftarrow \operatorname{ch}_{2}\operatorname{ch}_{2}\operatorname{oPo}_{n}\operatorname{ch}_{2} \xrightarrow{}_{n} \\ \stackrel{OPh}{}_{8} \end{array}$$

~

0170-0839/78/0001/0055/\$01.00

behaved as an electrophilic one (M_E). In the present study, alternative two combinations of M_N and M_E , i.e., 1-2 and 4-5 were examined. In both cases polyphosphonates were produced. Before this study preparation of polyphosphonates was performed by ring-opening polymerization of cyclic phosphonites (MUKAIYAMA et al, 1964; HARWOOD and PATEL, 1968).

Results and Discussion

Alternating Copolymerization of 2-Phenoxy-1,3,2dioxaphospholane (1) with Acrylic Acid Derivatives (2). An equimolar mixture of 1 and 2 was allowed to kept at 100°C in acetonitrile or DMF solvent under nitrogen. Copolymerization took place and gave resinous or powdery materials after usual work-up procedures (TABLE).

TABLE

Alternating Copolymerization between $\rm M_N$ (1 and 4) and $\rm M_E$ Monomers (2 and 5)^a

м _N	М _Е	Solvent	Reac Temp (°C)	tion Time (hr)	Yield (%)	Mol.Wt. ^C	Structure
1	2a	CH ₃ CN	100	31	74	1710	3a
1	2b ^b	CH ₃ CN	100	37	63	2110	3b
1	2c ^b	DMF	100	20	48	1570	3 c
2	5a	PhCN	120	22	49	1410	6a
2	5a	CH ₃ CN	100	37	52	1280	6a
2	5b	ch ₃ cn	120	30	37	1870	6b

 $^{\rm a}$ $\rm M_{\rm N}=\rm M_{\rm E}=3.0~mmol~in$ 1.5 ml solvent under $\rm N_2$ in a sealed tube.

^b Trans-isomer.

^C Determined by vapor pressure osmometry in CHCl₃ at 35°C.

Copolymer structure was determined by ¹H NMR and IR spectroscopy. ¹H NMR spectrum of copolymer from 1 and 2a in CDCl₃ showed a multiplet peak at δ 2.0-3.0 due to O=PCH₂CH₂C=O (4H), a broad peak at δ 4.0-4.6 due to two methylenes of OCH₂ (4H), and a phenyl peak at $\int 7.0-7.6$ (5H). In the IR spectrum of the same copolymer very strong absorption bands at 1735 cm⁻¹ ($V_{C=O}$), 1240 cm⁻¹ ($V_{P=O}$) and 1195 cm⁻¹ (V_{P-OPh}) were observed. These data along with those of our previous copolymers 7 and 8 were taken to support the alternating copolymer structure of polyphosphonate 3a. ¹H NMR and IR data of copolymers of 3b and 3c are as follows. ¹H NMR signals of 3b in CDCl₃; $\int 1.0-1.6$ (CH₃, 3H), $\int 2.2-3.1$ (O=P-CHCH₂-C=O, 3H), $\int 4.0-4.6$ (two OCH₂, 4H), and $\int 7.0-7.5$ (Ph, 5H) and IR absorption data of 3b; 1735 cm⁻¹ ($V_{C=O}$) and 1240 cm⁻¹ ($V_{P=O}$). ¹H NMR signals of 3c in CDCl₃; $\int 2.7-3.4$ (O=P-CHCH₂C=O, 3H), $\int 3.4-4.5$ (two OCH₂, 4H), and $\int 6.9-7.7$ (two Ph, 10H) and IR absorption data of 3c; 1710 cm⁻¹ ($V_{C=O}$), 1240 cm⁻¹ ($V_{P=O}$) and 1200 cm⁻¹ ($V_{P=OPh}$).

Alternating Copolymerization of 2-Phenyl-1,3,2dioxaphospholane (4) with α -Keto Acids (5). Similarly, combination of 4 and 5 gave alternating copolymer of polyphosphonate 6 when an equimolar mixture of both monomers was heated above 100°C (TABLE). ¹H NMR spectrum of the copolymer from 4 and 5a in CDCl₃ showed a peak at β 1.3-1.9 due to CH₃ (3H), a peak at β 4.0-4.6 assignable to two OCH₂ (4H), a broad signal at δ 5.1-5.4 due to POCH (1H) and phenyl signal at δ 7.1-8.0 (5H). IR spectrum of the copolymer indicated characteristic two bands at 1750 cm⁻¹ ($\gamma_{C=0}$) and at 1245 cm⁻¹ ($\gamma_{P=0}$). These data support the alternating copolymer structure 6a. ¹H NMR (CDCl₃) and IR spectral data of 6b were as follows: δ 3.7-4.5 (two OCH₂, 4H), δ 5.6-6.2 (POCH, 1H), and δ 6.8-8.0 (two Ph, 10H); 1750 cm⁻¹ ($\gamma_{C=0}$) and 1255 cm⁻¹ ($\gamma_{P=0}$).

<u>Copolymerization Mechanism</u>. It is reasonable to assume intermediates of zwitterion and/or phosphorane in the above reactions. In reaction (1) a zwitterion **9** is formed from **1** and **2** involving a hydrogen transfer, which is the key intermediate in the copolymerization between **1** and **2**.

A zwitterion **9** is assumed to be in equilibrium with a spiro phosphorane **10**, although **10** has not been isolated yet as a stable species. The propagation proceeds via the opening of cyclic phosphonium group by the attack of carboxylate anion of another zwitterion.

In the combination of 4 and 5, however, a spiro phosphorane 12 has actually been isolated at a lower temperature, e.g., at room temperature. The copolymerization between 4 and 5 proceeds also through the opening of phosphonium ring by the attack of carboxylate group of another zwitterion.

Summary

The present paper describes alternating copolymerizations of 2-phenoxy-1,3,2-dioxaphospholane 1 with acrylic acid derivatives 2 and of 2-phenyl-1,3,2-dioxaphospholane 4 with 0 -keto acids 5. At temperatures above 100°C, these copolymerizations took place without added initiator to give low molecular-weight polyphosphonates, 3 and 6, respectively. In both cases 1 and 4 acted as nucleophilic monomers and 2 and 5 served as electrophilic ones. Key-intermediates for the respective copolymerizations were postulated and presented.

References

HARWOOD, H. J., and N. K. PATEL : Macromolecules, 1, 233 (1968). MUKAIYAMA, T., T. FUJISAWA, Y. TAMURA, and Y. YOKOTA : J. Org. Chem. 29, 2572 (1964). SAEGUSA, T. : Chem. Technol. 5, 295 (1975a) SAEGUSA, T., S. KOBAYASHI, Y. KIMURA and H. IKEDA : J. Macromol. Sci., Chem., <u>A-9</u>, 641 (1975b). SAEGUSA, T., S. KOBAYASHI, and Y. KIMURA : Pure and Appl. Chem. <u>48</u>, 307 (1976a). SAEGUSA, T., Y. KIMURA, N. ISHIKAWA, and S. KOBAYASHI : Macromolecules, <u>9</u>, 724 (1976b). SAEGUSA, T. : Angew. Chem. <u>89</u>, 867 (1977a). SAEGUSA, T., T. YOKOYAMA, Y. KIMURA, and S. KOBAYASHI : Macromolecules, <u>10</u>, 791 (1977b).

Received June 15, 1978.